Addition of microbially-treated sugar beet residue and a native bacterium increases structural stability in heavy metal-contaminated Mediterranean soils.

نویسندگان

  • L Carrasco
  • F Caravaca
  • R Azcón
  • J Kohler
  • A Roldán
چکیده

A mesocosm experiment was conducted to investigate the effect of the addition of Aspergillus niger-treated sugar beet waste, in the presence of rock phosphate, and inoculation with a native, metal-tolerant bacterium, Bacillus thuringiensis, on the stabilisation of soil aggregates of two mine tailings, with differing pH values, from a semiarid Mediterranean area and on the stimulation of growth of Piptatherum miliaceum. Bacterium combined with organic amendment enhanced structural stability (38% in acidic soil and 106% in neutral soil compared with their corresponding controls). Only the organic amendment increased pH, electrical conductivity, water-soluble C, water-soluble carbohydrates and plant growth, in both soils. While in neutral soil both organic amendment and bacterium increased dehydrogenase activity, only organic amendment had a significant effect in acidic soil. This study demonstrates that the use of P. miliaceum in combination with organic amendment and bacterium is a suitable tool for the stabilisation of the soil structure of degraded mine tailings, although its effectiveness is dependent on soil pH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effectiveness of the Application of Arbuscular Mycorrhiza Fungi and Organic Amendments to Improve Soil Quality and Plant Performance under Stress Conditions

Plant growth is limited in arid and/or contaminated sites due to the adverse conditions coming from heavy metal (HM) contamination and/or water stress. Moreover, soils from these areas are generally characterised by poor soil structure, low water-holding capacity, lack of organic matter and nutrient deficiency. In order to carry out a successful re-afforestation, it is necessary to improve soil...

متن کامل

Significance of treated agrowaste residue and autochthonous inoculates (Arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals.

In this study, we analyzed the impact of treatments such as Aspergillus niger-treated sugar beet waste (SB), PO4(3-) fertilization and autochthonous inoculants [arbuscular mycorrhizal (AM) fungi and Bacillus cereus], on the bacterial community structure in a soils contaminated with heavy metals as well as, the effectiveness on plant growth (Trifolium repens). The inoculation with AM fungi in SB...

متن کامل

Phytoremediation potential of heavy metals by two native pasture plants (Eucalyptus grandis and ailanthus altissima) assisted with AMF and fibrous minerals in contaminated mining regions

The current study assesses the effect of fibrous clay minerals’ amendments and arbuscular mycorrhiza incubation on heavy metal uptake and translocation in Eucalyptus grandis and Ailanthus altissima plants. For doing so, Eucalyptus and ailanthus trees have been grown in a soil sample, contaminated with heavy metal iron ore mining and collected from southern Iran. The area under study is arid, wi...

متن کامل

Phytoremediation potential of heavy metals by two native pasture plants (Eucalyptus grandis and ailanthus altissima) assisted with AMF and fibrous minerals in contaminated mining regions

The current study assesses the effect of fibrous clay minerals’ amendments and arbuscular mycorrhiza incubation on heavy metal uptake and translocation in Eucalyptus grandis and Ailanthus altissima plants. For doing so, Eucalyptus and ailanthus trees have been grown in a soil sample, contaminated with heavy metal iron ore mining and collected from southern Iran. The area under study is arid, wi...

متن کامل

Interactive Effects of Salinity and Cadmium Pollution on Enzyme Activity in a Calcareous Soil Treated With Plant Residues

Abiotic stresses such as salinity and contamination individually have a negative effect on the soil enzyme activities, whereas addition of organic matter to soil can alleviate the negative impacts of stresses on the enzyme activity. However, the combined effects of these stresses (multiple stresses) on soil biochemical conditions and the role of organic matter addition in these interactions are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Science of the total environment

دوره 407 21  شماره 

صفحات  -

تاریخ انتشار 2009